A New Recursive Implementation of Sparse Cholesky Factorization

نویسندگان

  • J. J. Dongarra
  • P. Raghavan
چکیده

Consider the Cholesky factorization of a sparse symmetric positive de nite matrix, A = LL . The rst two steps use symbolic, graph-theoretic techniques to order A to reduce ll in L, and to determine the exact sparsity structure of L. The factor L is computed in a third \numeric factorization" step. The two leading schemes for numeric factorization are a blocked column-oriented scheme, and a multifrontal implementation. We propose a new recursive implementation that could be viewed as a hybrid of these two schemes. The new scheme seeks to eÆciently access the memory hierarchy on modern computers by a simple recursion on a \supernodal tree" associated with L. Consider diagonal blocks in L numbered in post-order on the supernodal tree; now the recursive formulation is equivalent to processing a sequence of dense diagonal blocks in L from the top left to the bottom right. Unlike the multifrontal scheme, the new scheme does not require extra stack storage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parallel and Fully Recursive Multifrontal Supernodal Sparse Cholesky

We describe the design, implementation, and performance of a new parallel sparse Cholesky factorization code. The code uses a supernodal multifrontal factorization strategy. Operations on small dense submatrices are performed using new dense-matrix subroutines that are part of the code, although the code can also use the BLAS and LAPACK. The new code is recursive at both the sparse and the dens...

متن کامل

Parallel and fully recursive multifrontal sparse Cholesky

We describe the design, implementation, and performance of a new parallel sparse Cholesky factorization code. The code uses a multifrontal factorization strategy. Operations on small dense submatrices are performed using new dense matrix subroutines that are part of the code, although the code can also use the blas and lapack. The new code is recursive at both the sparse and the dense levels, i...

متن کامل

Optimization of a Statically Partitioned Hypermatrix Sparse Cholesky Factorization

The sparse Cholesky factorization of some large matrices can require a two dimensional partitioning of the matrix. The sparse hypermatrix storage scheme produces a recursive 2D partitioning of a sparse matrix. The subblocks are stored as dense matrices so BLAS3 routines can be used. However, since we are dealing with sparse matrices some zeros may be stored in those dense blocks. The overhead i...

متن کامل

A PERFORMANCE STUDY OF SPARSE CHOLESKY FACTORIZATION ON INTEL iPSC/860

The problem of Cholesky factorization of a sparse matrix has been very well investigated on sequential machines. A number of efficient codes exist for factorizing large unstructured sparse matrices, for example, codes from Harwell Subroutine Library [4] and Sparspak [7]. However, there is a lack of such efficient codes on parallel machines in general, and distributed memory machines in particul...

متن کامل

A Multilevel Block Incomplete Cholesky Preconditioner for Solving Rectangular Sparse Matrices from Linear Least Squares Problems

An incomplete factorization method for preconditioning symmetric positive definite matrices is introduced to solve normal equations. The normal equations are formed as a means to solve rectangular matrices from linear least squares problems. The procedure is based on a block incomplete Cholesky factorization and a multilevel recursive strategy with an approximate Schur complement matrix formed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000